skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Roy, Nirmita"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Narendran, Nadarajah; Mills, Samuel T.; Rao, Govi (Ed.)
  2. Narendran, Nadarajah; Mills, Samuel T.; Rao, Govi (Ed.)
  3. Abstract Formic acid (FA) is one of the very important organic acids that has been widely used in various industries. The highly corrosive FA can have severe adverse effects on the surrounding environment. Here, we developed an electrochemical sensor that utilizes the material properties of multi‐walled carbon nanotubes (MWCNTs), and copper phthalocyanine (CuPc) for the real‐time detection of FA gas. The response of FA has been compared with the responses of 9 common volatile organic compounds (VOCs). The chronoamperometry (CA) results revealed a high selectivity towards FA by showing an increase in the sensor current by about 25 %, in contrast to the decrease of the current in response to the other VOCs. The sensitivity of the CuPc device to FA was calculated to be 38.85 mAM−1. Material characterization (SEM, EDX, FTIR, Raman, and UV‐vis) also strongly suggests a protonation mechanism caused by the carboxylic acid group, which enhances the electrical conductivity. 
    more » « less